Home
Class 11
MATHS
tan^(-1)1+tan^(-1)(1)/(3)=?...

tan^(-1)1+tan^(-1)(1)/(3)=?

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(2)

The numerical value of tan^(-1) 1+ tan^(-1) (1/2) + tan^(-1) (1/3) =_______.

tan^(-1)(1/2)+tan^(-1)(1/3)=

tan^(-1)(1/2)+tan^(-1)(1/3)=?

tan^(-1)(1/2)+tan^(-1)(1/3) is equal to

tan^(-1)(1/2)+tan^(-1)(1/3) is equal to

tan^(-1)(1/2)+tan^(-1)(1/3)=tan^(-1)(theta) then theta is

Prove that tan^(-1)(1)+tan^(-1)(2) +tan^(-1)(3) =pi .

Pove that i) tan^(-1)1/2+tan^(-1)2/11=tan^(-1)3/4 ii) tan^(-1)2/11+tan^(-1)7/24=tan^(-1)1/2 iii) tan^(-1)1+tan^(-1)1/2+tan^(-1)1/3=pi/2 iv) 2tan^(-1)1/3+tan^(-1)/17=pi/4 v) tan^(-1)2-tan^(-1)1=tan^(-1)1/3 vi) tan^(-1)+tan^(-1)2+tan^(-1)3=pi vii) tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4 viii) tan^(-1)1/4+tan^(-1)2/9=1/2tan^(-1)4/3