Home
Class 12
MATHS
The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k)...

The lines `(x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1)` are coplanar, if

Promotional Banner

Similar Questions

Explore conceptually related problems

The line (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar if

If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, then find the value of k.

Find the values of k if the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar.

the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(1)=(z-5)/(1) are coplanar if k=?

The lines (x-2)/(1) = (y-3)/(1) =(z-4)/(-k) and (x-3)/(k)=(y-4)/(1) = (z-5)/(1) are coplanar if the values of k are

If the lines (x-2)/(1)=(y-3)/(1)=(x-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar,then k can have