Home
Class 12
MATHS
Prove that tan^(-1).(1)/(sqrt(x^(2) -1))...

Prove that `tan^(-1).(1)/(sqrt(x^(2) -1)) = (pi)/(2) - sec^(-1) x, x gt 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

"tan"^(-1)1/(sqrt(x^(2)-1))|x|gt1

tan^(- 1)(1/(sqrt(x^2-1))),|x|gt1

Prove that tan^(-1) x =sec^(-1) sqrt(1+x^2)

Prove that tan^(-1)((sqrt(1+x^2)-1)/x)=1/2 tan^(-1)x .

Prove that tan^(-1)backslash(sqrt(1+x^(2))-1)/(x)=(1)/(2)tan^(-1)x

Show that "cosec"^(-1) (x/(sqrt(x^(2)-1))) = sec^(-1) (x) , | x | gt 1

If x lt 0 , the prove that cos^(-1) ((1 + x)/(sqrt(2(1 + x^(2))))) = (pi)/(4) - tan^(-1) x

If x lt 0 , the prove that cos^(-1) ((1 + x)/(sqrt(2(1 + x^(2))))) = (pi)/(4) - tan^(-1) x

If x lt 0 , the prove that cos^(-1) ((1 + x)/(sqrt(2(1 + x^(2))))) = (pi)/(4) - tan^(-1) x

If x lt 0 , the prove that cos^(-1) ((1 + x)/(sqrt(2(1 + x^(2))))) = (pi)/(4) - tan^(-1) x