Home
Class 12
MATHS
सदिश vec(b) के समान्तररेखा के समतल vec (...

सदिश `vec(b)` के समान्तररेखा के समतल `vec (r ) . vec(n) = q ` के बीच का कोण है -

Promotional Banner

Similar Questions

Explore conceptually related problems

if vec(P) xx vec(R ) = vec(Q) xx vec(R ) , then

Prove that [vec(p) - vec(q) vec(q) - vec(r) vec(r) - vec(p)] = 0

If vec(p), vec(q) and vec(r) are perpendicular to vec(q) + vec(r), vec(r) + vec(p) and vec(p) + vec(q) respectively and if |vec(p) + vec(q)| = 6, |vec(q) + vec(r)| = 4sqrt(3) and |vec(r) + vec(p)| = 4 , then |vec(p) + vec(q) + vec(r)| is

If vec a and vec b are orthogonal unit vectors, then for a vector vec r noncoplanar with vec a and vec b , vec rxx veca is equal to a. [ vec r vec a vec b] vec b-( vec r. vec b)( vec bxx vec a) b. [ vec r vec a vec b]( vec a+ vec b) c. [ vec r vec a vec b] vec a-( vec r. vec a) vec axx vec b d. none of these

If vec a and vec b are orthogonal unit vectors, then for a vector vec r noncoplanar with vec a and vec b , vector rxxa is equal to a. [ vec r vec a vec b] vec b-( vec r. vec b)( vec bxx vec a) b. [ vec r vec a vec b]( vec a+ vec b) c. [ vec r vec a vec b] vec a-( vec r. vec a) vec axx vec b d. none of these

If vec a and vec b are orthogonal unit vectors, then for a vector vec r noncoplanar with vec a and vec b , vector rxxa is equal to a. [ vec r vec a vec b] vec b-( vec r. vec b)( vec bxx vec a) b. [ vec r vec a vec b]( vec a+ vec b) c. [ vec r vec a vec b] vec a-( vec r. vec a) vec axx vec b d. none of these

If the angle between two radii of a circle be 130^@ , then the angle between the tangents at the end of these radii is: यदि किसी वृत्त की दो त्रिज्या के बीच का कोण 130^@ है, तो इन त्रिज्या के अंत में स्पर्शरेखाओं के बीच का कोण है

Given that vec a , vec b , vec p , vec q are four vectors such that vec a+ vec b=mu vec p , vec b*vec q=0a n d|vec b|^2=1,w h e r emu is a scalar. Then |( vec adot vec q) vec p-( vec pdot vec q) vec a| is equal to (a) 2| vec p . vec q| (b) (1//2)| vec p . vec q| (c) | vec pxx vec q| (d) | vec p . vec q|

Given that vec a , vec b , vec p , vec q are four vectors such that vec a+ vec b=mu vec p , vec b*vec q=0a n d|vec b|^2=1,w h e r emu is a scalar. Then |( vec adot vec q) vec p-( vec pdot vec q) vec a| is equal to (a) 2| vec p . vec q| (b) (1//2)| vec p . vec q| (c) | vec pxx vec q| (d) | vec p . vec q|