Home
Class 12
MATHS
Assume that theta is a rational multiple...

Assume that `theta` is a rational multiple of `pi` such that `cos theta` is a distinct rational. The number of values of `cos theta` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Assume that theta is a rational multiple of pi such that cos theta isa distinct rational. The number of values of cos theta is

If sin(pi cos theta) = cos(pi sin theta) , then the value of cos(theta+- pi/4) is

If tan (pi cos theta) = cot (pi sin theta), then the valus of cos (theta -(pi)/(4)) are-

If sin(pi cos theta) = cos(pi sin theta) , then of the value cos(theta- pi/4) is

If sin(pi cos theta)=cos(pi sin theta), then of the value cos(theta+-(pi)/(4)) is

If the system of linear equations {:((cos theta)x + (sin theta) y + cos theta=0),((sin theta)x+(cos theta)y + sin theta=0),((cos theta)x + (sin theta)y -cos theta=0):} is consistent , then the number of possible values of theta, theta in [0,2pi] is :

If the system of linear equations {:((cos theta)x + (sin theta) y + cos theta=0),((sin theta)x+(cos theta)y + sin theta=0),((cos theta)x + (sin theta)y -cos theta=0):} is consistent , then the number of possible values of theta, theta in [0,2pi] is :

If 2cos ec theta-cos theta cot theta>=k AA theta in(0,pi) then value of k is

When theta=11/3pi , then the value of cos theta-sin theta is