Home
Class 12
MATHS
If bar(a)=7i +2 j + k , bar(b) = 2 j + k...

If `bar(a)=7i +2 j + k , bar(b) = 2 j + k-i ` , then component of `bar(a)` perpendicular to `bar(b)` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a)=7i+2j+k,bar(b)=2j+k-i, then component of bar(a) perpendicular to bar(b) is :

If bar(a)=bar(i)+2bar(j)+bar(k),bar(b)=2bar(j)+bar(k)-bar(i), then component of bar(a) perpendicular to bar(b) is

If bar(a)=2bar(i)+bar(j)+2bar(k),bar(b)=5bar(i)-3bar(j)+bar(k), then the length of the component vector of b perpendicular to a is

If bar(a)=bar(i)+bar(j)+bar(k) , bar(b)=bar(i)+2bar(j)+3bar(k) then a unit vector perpendicular to both vectors (bar(a)+bar(b)) and (bar(a)-bar(b)) is

If bar(a)=i+j+k, bar(b)=i-j+2k and bar(c)=x""i+(x-2)j-k . If the vector bar(c) lies in the plane of bar(a) and bar(b) then x equals to

If bar(a) = 2bar(i) + 3bar(j) + 4bar(k), bar(b) = bar(i) + bar(j) -bar(k), bar(c ) = bar(i) - bar(j) + bar(k) , compute bar(a)x(bar(b)xbar(c )) and verify that it is perpendicular to bar(a) .

If bar(a) = 2bar(i) - 3bar(j) + bar(k) and bar(b) = bar(i) + 4bar(j) -2bar(k) , then find (bar(a) + bar(b))xx(bar(a)-bar(b))

If bar(a)= 2bar(i) - 3bar(j) + 5bar(k), bar(b)= - bar(i) + 4bar(j)+ 2bar(k) then find (bar(a) + bar(b)) xx (bar(a) - bar(b)) and unit vector perpendicular to both bar(a) + bar(b) " & " bar(a)- bar(b) .

If bar(a) = 2bar(i) - 3bar(j) + 5bar(k), bar(b) = -bar(i) + 4bar(j) + 2bar(k) then find bar(a) xx bar(b) and unit vector perpendicular to both bar(a), bar(b) [-26bar(i) - 9bar(j) + 5bar(k), +- 1/(sqrt(782))26bar(i)+9bar(j)-5bar(k)) .

If bar(a) = bar(i) - bar(j)-bar(k), bar(b) = 2bar(i) - 3bar(j) + bar(k) then find the projection vector of bar(b) on bar(a) and its magnitude.