Home
Class 12
MATHS
If y=tan^(-1){(sqrt(1+x^2)+sqrt(1-x^2))/...

If `y=tan^(-1){(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))}` , `-1 < x < 1, x!= 0 ` . Find `dy/dx`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))), x^2 le 1 , then find (dy)/(dx)

y= tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))) , where -1 < x < 1 , find dy/dx

y= tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))) , where -1 < x < 1 , find dy/dx

If y=tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))] for 0<|x|<1 ,find (dy)/(dx)

If y = tan^(-1) ((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) show that (dy)/(dx) = x/sqrt(1-x^4) .

If y=tan^(-1)((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) find (dy)/(dx)

y= tan^(-1)(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)) then dy/dx