Home
Class 11
MATHS
x+1/x=2cosalpha then x^n+1/x^n=...

`x+1/x=2cosalpha` then `x^n+1/x^n=`

Promotional Banner

Similar Questions

Explore conceptually related problems

cot^-1[(cosalpha)^(1/2)]-tan^-1[(cosalpha)^(1/2)]=x \; then , sin x=

If x=cosalpha+isinalpha and 1+sqrt(1-y^2)=ny then show that y/2n(1+nx)(1+n/x)=1+ ycosalpha

The sum of 1+n(1-1/x)+(n(n+1))/(2!)(1-1/x)^2+oo will be a. x^n b. x^(-n) c. (1-1/x)^n d. none of these

If x=cosalpha+isinalpha,y=cosbeta+isinbeta," then "x^(m).y^(n)+(1)/(x^(m).y^(n))

If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (A) 1+x^n (B) 1+x^-n (C) x^n+x^-n (D) x^n-x^-n

If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (A) 1+x^n (B) 1+x^-n (C) x^n+x^-n (D) x^n-x^-n

If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (A) 1+x^n (B) 1+x^-n (C) x^n+x^-n (D) x^n-x^-n

If ((1 +i)/(1 -i))^(x) =1 , then (A) x=2n+1 (B) x=4n (C) x=2n (D) x=4n+1, n in N.

If ((1 +i)/(1 -i))^(x) =1 , then (A) x=2n+1 (B) x=4n (C) x=2n (D) x=4n+1, n in N.

Prove that cos^(-1)((1-x^(2n))/(1+x^(2n)))=2 tan^(-1)x^n