Home
Class 12
MATHS
If y=e^x+e^(-x) , prove that (dy)/(dx)=s...

If `y=e^x+e^(-x)` , prove that `(dy)/(dx)=sqrt(y^2-4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(x)cos x, prove that (dy)/(dx)=sqrt(2)e^(x)cos(x+(pi)/(4))

If y,=e^(x)cos x, prove that (dy)/(dx),=sqrt(2)e^(x)cos(x+(pi)/(4))

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y=e^xcosx , prove that (dy)/(dx)=sqrt(2)\ e^xcos(x+pi/4)

If y=(e^(x)-e^(-x))/(e^(x)+e^(-x)), prove that (dy)/(dx)=1-y^(2)

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1)) or, (dy)/(dx)+e^(y-x)=0

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2