Home
Class 11
MATHS
Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)...

Find `(dy)/(dx)` for `y=tan^(-1)sqrt((a-x)/(a+x)),-a lt x lt a`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)/(a+x)),-a

Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)/(a+x)) ,-a < x < a

Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)/(a+x)) ,-a < x < a

Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)/(a+x), -a < x < a.

Find (dy)/(dx) for y=tan^(-1){sqrt((a-x)/(a+x))}," where " -a lt x lt a

(dy)/(dx) for y=tan^(-1){sqrt((1+cosx)/(1-cosx))} ,where 0 lt x lt pi , is

(dy)/(dx) for y=tan^(-1){sqrt((1+cosx)/(1-cosx))} ,where 0 lt x lt pi , is

Find (dy)/(dx) if y= sec^(-1)((1)/(2x^(2)-1)), 0 lt x lt (1)/(sqrt(2))

Find (dy)/(dx)," if "y=sec^(-1) ((1)/(2x^(2)-1)), 0 lt x lt (1)/(sqrt2)