Home
Class 12
MATHS
"cot"^(-1)(x)/(sqrt(1-x^(2)))...

`"cot"^(-1)(x)/(sqrt(1-x^(2)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(-1)((sqrt(1-x^(2)))/(x))

int(tan(cos^(-1)x)+cot(sin^(-1)x))/(sqrt(1-x^(2)))dx=

The solutio set of the equation sin^(-1)sqrt(1-x^(2))+cos^(-1)x="cot"^(-1)(sqrt(1-x^(2)))/x-sin^(-1)x is

Write "cot"^(-1)(1/(sqrt(x^(2)-1))),|x|gt1 in simplest form.

Prove that cot (cos^(-1) x) = x/(sqrt(1-x^(2))) |x| lt 1

The solution set of equation sin^(-1)sqrt(1-x^(2))+cos^(-1)x=cot^(-1)((sqrt(1-x^(2)))/(x))-sin^(-1)

Prove that cot^(-1)((1+sqrt(1-x^(2)))/x)=(1)/(2)sin^(-1)x

If "Sec"^(-1)1/(sqrt(1-x^(2)))+"Cot"^(-1)(sqrt(1-x^(2)))/x=Sin^(-1)k , then the value of k is

If sec^(-1)(1/(sqrt(1-x^(2))))+cot^(-1)((sqrt(1-x^(2)))/x)=sin^(-1)(k) then k=