Home
Class 12
MATHS
A binary operation * on the set {0,1,...

A binary operation * on the set {0,1,2,3,4,5} is defined as: `a*b={a+b a+b-6"\ \ \ \ if\ "a+b<6"\ \ \ if"\ a+bgeq6` Show that zero is the identity for this operation and each element a of the set is invertible with 6a, being the inverse of a.

Promotional Banner

Similar Questions

Explore conceptually related problems

Define a binary operation * on the set A={0,1,2,3,4,5} as a*b=a+b (mod 6). Show that zero is the identity for this operation and each element a of the set is invertible with 6-a being the inverse of adot OR A binary operation * on the set {0,1,2,3,4,5} is defined as a*b={a+b ,ifa+b<6a+b-6,ifa+bgeq6 Show that zero is the identity for this operation and each element a of set is invertible with 6-a , being the inverse of a.

Define a binary operation * on the set A={0,1,2,3,4,5} as a*b=a+b (mod 6). Show that zero is the identity for this operation and each element a of the set is invertible with 6-a being the inverse of adot OR A binary operation * on the set {0,1,2,3,4,5} is defined as a*b={a+b ,ifa+b<6a+b-6,ifa+bgeq6 Show that zero is the identity for this operation and each element a of set is invertible with 6-a , being the inverse of a.

Define a binary operation ** on the set A={0,1,2,3,4,5} as a**b=(a+b) \ (mod 6) . Show that zero is the identity for this operation and each element a of the set is invertible with 6-a being the inverse of a . OR A binary operation ** on the set {0,1,2,3,4,5} is defined as a**b={[a+b if a+b = 6]} Show that zero is the identity for this operation and each element a of the set is invertible with 6-a , being the inverse of a .

A binary operation * on the set {0,1,2,3,4,5} is defined as a*b= {{:(a+b, "if" a+b lt 6),(a+b-6, "if" a +b gt=6):} Find the composition table for * Also, show that zero is the identity for this operation and each non-zero element a of the set is invertible with 6-a, being the inverse of a.

Define a binary operation * on the set {0, 1, 2, 3, 4, 5} as a*b = { a + b , if a+ b < 6 a+b-6 , if a+bge6 . Show that zero is the identity for this operation and each element 'a' of the set is invertible with (6-a) being the inverse of a.

Define a binary operation * on the set {0,1,2,3,4,5} as a*b = {:{(a+b, if a +b < 6),(a+b-6, if a +bge6):} Show that zero is the identity for this operation and each element ane0 of the set is invertible with 6 - a being the inverse of a.

** be a binary operation on a set {0,1,2,3,4} defined by a**b={(a+b," if " a+blt6),(a+b-6," if " a + b ge6):} Then find identity element of ** .