Home
Class 11
MATHS
log5 120+(x-3)-2*log5(1-5^(x-3))=-log(0....

`log_5 120+(x-3)-2*log_5(1-5^(x-3))=-log(0. 2-5^(x-4))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x :(log)_5 120+(x-3)-2.(log)_5(1-5^(x-3))=-(log)_5(0. 2-5^(x-4))dot

Solve for x :(log)_5 120+(x-3)-2.(log)_5(1-5^(x-3))=-(log)_5(0. 2-5^(x-4)) .

Solve for xlog_(5)120+(x-3)-2*log_(5)(1-5^(x-3))=-log_(5)(0.2-5^(x-4))

Solve for x:(log)_(5)120+(x-3)-2.(log)_(5)(1-5^(x-3))=-(log)_(5)(0.2-5^(x-4))

log_5 ((2+x)/10)=log_5 (2/(x+1))

log_(0)5sqrt((x-4)/(x+3))

If log_(5)2,log_(5)(2^(x)-3) and log_(5)((17)/(2)+2^(x-1)) are in AP, then the value of x is

Solve for x: a) (log_(10)(x-3))/(log_(10)(x^(2)-21)) = 1/2 b) log(log x)+log(logx^(3)-2)= 0, where base of log is 10. c) log_(x)2. log_(2x)2 = log_(4x)2 d) 5^(logx)+5x^(log5)=3(a gt 0), where base of log is 3. e) If 9^(1+logx)-3^(1+logx)-210=0 , where base of log is 3.