Home
Class 12
MATHS
If x^3 dy+xydx=x^2 dy+2ydx,y(2)=e, then ...

If `x^3 dy+xydx=x^2 dy+2ydx,y(2)=e,` then y(-1)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^3dy+ xydx= 2ydx +x^2dy and y(2) =e then y(4) = ?

If x^(3) dy + xy dx = x^(2) dy + 2y dx , y (2) = e and x gt 1 , then y(4) is equal to .

If (x^(2)+y^(2))dy=xydx and y(1)=1 and y(x_(o))=e, then x_(o)=

(x^(2)+1)dy=2xydx;y(1)=2

2xydx+(x^(2)+2y^(2))dy=0

Solve: x^2 ydx=(x^ 3+y ^3)dy

If (x^2+y^2)dy=xydx and y(1)=1 and y(x_o)=e , then x_o=

Solve x^2dy+y^2dx=xy(xdy-ydx)

If (x^2+y^2)dy=xydx and y(1)=1 . If y(x_0)=e then x_0 is equal to (A) sqrt(2)e (B) sqrt(3)e (C) 2e (D) e

x^(2)y(2xdy+3ydx)=dy