Home
Class 12
MATHS
यदि y= e^(ax)sin bx, तब सिद्ध कीजिये क...

यदि ` y= e^(ax)sin bx,` तब सिद्ध कीजिये की
` (d^(2)y)/(dx^(2) )-2a (dy)/(dx) +(a^(2) +b^(2) )y=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(ax)cos bx, Show that (d^(2)y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0

If y=e^(ax)sinbx, then (d^(2)y)/(dx^(2))-2a(dy)/(dx)+a^(2)y=

If y=e^(ax) sin bx then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y = e^(-ax) cos (bx + c) , show that (d^2y)/(dx^2) + 2a(dy)/(dx) + (a^2 + b^2) y = 0

If y=e^(ax)cosbx , then prove that (d^(2)y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y = e^(x) (sin x + cos x ) , prove that (d^(2) y)/( dx^(2)) - 2 (dy)/( dx) + 2 y = 0

If y=e^(ax) sin be then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y=e^(x)(sin x+cos x), prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)=2y=0

If y=e^(ax)sinbx," then "(d^(2)y)/(dx^(2))-2a(dy)/(dx)=