Home
Class 12
MATHS
If f(x)=x+(1)/(x), such that [f(x)]^(3)...

If `f(x)=x+(1)/(x)`, such that `[f(x)]^(3)=f(x^(3))+lambdaf((1)/(x))`, then `lambda=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x+(1)/(x) , such that f^3 (x)=f(x^(3))+lambdaf((1)/(x)) , then lambda=

If f(x)=x+(1)/(x) , such that f^3 (x)=f(x^(3))+lambdaf((1)/(x)) , then lambda=

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

ff(x)=x+(1)/(x), thenprovethat [f(x)]^(3)=f(x^(3))+3f((1)/(x))

If f(x),=x+(1)/(x), prove that [f(x)]^(3),=f(x^(3))+3f((1)/(x))dots

If f(x)=x+1/x show that (f(x))^3=f(x^3)+3 f(x)

If f(x)=x+1/x , prove that [f(x)]^3=f(x^3)+3f(1/x)dot .

If f(x)=(1+x)/(1-x), show that: f(2x)=(3f(x)-1)/(3-f(x)) .

If f(x)=x^3-1/(x^3) , show that f(x)+f(1/x)=0.