Home
Class 12
MATHS
Let f(x) be a polynomial function of deg...

Let f(x) be a polynomial function of degree n satisfying the condition `f(x)f(1/x)=f(x)+f(1/x)`. Find f(x).

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is a polynomial function satisfying the condition f(x) .f((1)/(x)) = f(x) + f((1)/(x)) and f(2) = 9 then

If f(x) is a polynomial function satisfying the condition f(x) .f((1)/(x)) = f(x) + f((1)/(x)) and f(2) = 9 then

Polynomial function f(x) satisfying the condition f(x), f(1/x)=f(x)+f(1/x) . If f(10)=1001, then f(20) is

A function f:R rarr R satisfies the condition x^(2)f(x)+f(1-x)=2x-x^(4). Then f(x) is

A polynomial function f(x) satisfies the condition f(x)f(1/x)=f(x)+f(1/x) for all x inR , x!=0 . If f(3)=-26, then f(4)=

A polynomial function f(x) satisfies the condition f(x)f((1)/(x))=f(x)+f((1)/(x)) for all x in R,x!=0. If f(3)=-26, then f(4)=

A polynomial function f(x) satisfies the condition f(x)f((1)/(x))=f(x)+f((1)/(x)) . If f(10)=1001, then f(20)=

A polynomial function f(x) satisfies the condition f(x)f((1)/(x))=f(x)+f((1)/(x)) . If f(10)=1001, then f(20)=