Home
Class 10
MATHS
Prove the following trigonometric identi...

Prove the following trigonometric identities: `cottheta-tantheta=(2cos^2theta-1)/(sinthetacostheta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following trigonometric identities: cot theta-tan theta=(2cos^(2)theta-1)/(sin theta cos theta)

Prove the following trigonometric identities: tantheta-cottheta=(2sin^2theta-1)/(sinthetacostheta)

Prove the following trigonometric identities: tantheta-cottheta=(2sin^2theta-1)/(sinthetacostheta)

Prove the following trigonometric identities: tan theta-cot theta=(2sin^(2)theta-1)/(sin theta cos theta)

Prove the following trigonometric identities: (sintheta)/(1-costheta)=cos e ctheta+cottheta

Prove the following trigonometric identities: (tantheta+sintheta)/(tantheta-sintheta)=(sectheta+1)/(sectheta-1)

Prove the following trigonometric identities : (1+cot^2theta)(1-costheta)(1+costheta)=1 (ii) tan^2theta-1/(cos^2theta)=-1

Prove the following identities: (cos^2theta)/(1-tantheta)+(sin^3theta)/(sintheta-costheta)=1+sinthetacostheta

Prove the following trigonometric identities: (sin theta)/(1-cos theta)=cos ec theta+cot theta

Prove the following trigonometric identities: cos^2theta+1/(1+cot^2theta)=1 (ii) 1/(1+sintheta)+1/(1-sintheta)=2sec^2theta