Home
Class 11
MATHS
[" 14.Prove that: "],[qquad " (i) "(n!)/...

[" 14.Prove that: "],[qquad " (i) "(n!)/(r!)=n(n-1)(n-2)...(r+1)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). (n!)/((n-r+1)!) = (n!)/((n-r)!)

Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). (n!)/((n-r+1)!) = (n!)/((n-r)!)

Prove that : (i) (n!)/(r!)=n(n-1)(n-2)...(r+1) (ii) (n-r+1)*(n!)/((n-r+1)!)=(n!)/((n-r)!) (iii) (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)=((n+1)!)/(r!(n-r+1)!)

Prove that (n!)/(r!)=n(n-1)(n-2)dots(r+1)

Prove that (n-r+1)(n!)/((n-r+1)!)=(n!)/((n-r)!)

Prove that (n-r+1)(n!)/((n-r+1)!)=(n!)/((n-r)!)

Prove that (n-r+1)((n!)/((n-r+1)!))=((n!)/((n-r)!))

Prove that: (i) (.^(n)P_(r))/(.^(n)P_(r-2)) = (n-r+1) (n-r+2)

Prove that: ""^(n-1)P_r=(n-r)* ""^(n-1)P_(r-1)

Prove that : (""^(n)C_(r+1))/(""^(n)C_(r))=(n-r)/(r+1)