Similar Questions
Explore conceptually related problems
Recommended Questions
- [" 14.Prove that: "],[qquad " (i) "(n!)/(r!)=n(n-1)(n-2)...(r+1)]
Text Solution
|
- Prove that n(n-1)(n-2)......(n-r+1)=(n!)/(n-r)!
Text Solution
|
- Prove that ((n-1)!)/((n-r-1)!)+r.((n-1)!)/((n-r)!)=(n!)/((n-r)!)
Text Solution
|
- If sum(r=1)^(n)r^(3)((C(n,r))/(C(n,r-1)))=14^(2) then n=
Text Solution
|
- Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1...
Text Solution
|
- Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). ...
Text Solution
|
- Prove that n(n-1)(n-2) ...(n-r+1)=(n!)/((n-r)!).
Text Solution
|
- Prove that : (i) (n!)/(r!)=n(n-1)(n-2)...(r+1) (ii) (n-r+1)*(n!)...
Text Solution
|
- Prove that ((n),(r))+2((n),(r-1))+((n),(r-2))=((n+2),(r))
Text Solution
|