Home
Class 12
MATHS
If c^(2) = a^(2) + b^(2), then prove tha...

If `c^(2) = a^(2) + b^(2)`, then prove that `4s (s - a) (s - b) (s - c) = a^(2) b^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If c^(2) = a^(2) + b^(2) then write the value of 4s ( s- a) (s-b) (s-c) in terms of a,b.

In DeltaABC,c^(2)=a^(2)+b^(2), then 4s (s -a) (s -b) (s -c) =

If 2s = a + b + c , then prove that s^3 + (s-2a)^3 +(s-2b)^3 + (s-2c)^3 = 24 (s-a)(s-b)(s-c)

If 2x=a+b+c , then prove that, (s-a)^(2)+(s-b)^(2) +(s-c)^(2) +s^(2)=a^(2)+b^(2)+c^(2) .

If 2s = a + b + c , then the value of (s - a)^2 + (s - b)^2 + (s - c)^2 + s^2 - a^2 - b^2 - c^2 will be :

If A + B + C = 2s, then prove that sin (s - A) sin (s - B) + sin s. sin (s - C) = sin A sin B .

If 2s = a + b + c , then prove that (s-a)^3+(s-b)^3+(s-c)^3+3 abc = s^3

If c^2 = a^2 + b^2, 2s = a + b + c , then 4s(s-a) (s - b)(s-c)