Home
Class 12
MATHS
Let f(x)=sin x+cosx and g(x)=x^(2)-1, th...

Let `f(x)=sin x+cosx` and `g(x)=x^(2)-1`, then `g{f(x)}` is invertible if -

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sinx+cosx, g(x)= x^(2)-1 , then g{f(x)} is invertible in the domain

If f(x)=sin x+cos x and g(x)=x^(2)-1 then g(f(x)) is invertible in the domain.

If f(x)=sinx+cosx and g(x)=x^2-1 , then g(f (x)) is invertible in the domain .

If f(x)=sinx+cosx and g(x)=x^2-1 , then g(f (x)) is invertible in the domain ?.

If f(x)=sinx+cosx and g(x)=x^2-1 , then g(f (x)) is invertible in the domain .

If f(x)=sinx+cosx and g(x)=x^2-1 , then g(f (x)) is invertible in the domain .

If f(x)=sinx+cosx and g(x)=x^2-1 , then g(f (x)) is invertible in the domain .

If f(x)=sinx+cosx, g(x)=x^(2)-1, then g(f(x)) is invertible in the domain

If f(x)=sin x + cos x, g(x)=x^(2)-1 , then g(f(x)) is invertible in the domain

If f(x)=sin x + cos x, g(x)=x^(2)-1 , then g(f(x)) is invertible in the domain