Home
Class 12
MATHS
Let a=(pi)/(7), then (a) show that sin...

Let `a=(pi)/(7)`, then
(a) show that `sin^(2)3a-sin^(2)a=sin2asin3a`
(b) show that `co sec a=co sec 2a+co sec4a`.
(c) Prove that `cos a` is a root of the equation `8x^(3)+4x^(2)-4x+1=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of roots of the equation (3+cos x)^(2)=4-2sin^(8)x,x in[0,5 pi] are

Show that sin 3 x+sin 2 x-sin x=4 sin x cos (x/2) cos ((3 x)/2)

show that (cos (x/2) + sin (x/2))/(cos (x/2) - sin (x/2))= sec x +tan x

Prove that sec^(2)A-((sin^(2)A-2sin^(4)A)/(2cos^(4)A-cos^(2)A))=1

If sec theta-cos ec theta=(4)/(3) then show that theta=(1)/(2)sin^(-1)((3)/(4))

Show that 3(sin^4x+cos^4x)-2(sin^6x+cos^6x)=1 .

Prove that (sin 4x + sin 2x)/(cos 4x + cos 2x) = tan 3x .

Prove that (sec A + cos A) (sec A - cos A) = tan^2A+sin^2A .

Show that (sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x) = tan 2x