Home
Class 12
MATHS
[" 58.Minimum value of "(b+c)/(a)+(c+a)/...

[" 58.Minimum value of "(b+c)/(a)+(c+a)/(b)+(a+b)/(c)," (for real positive numbers "a,b,c)" is "],[[" (1) "1," (2) "2,(a)/(b)p_(b)^(+n)geqslant_(1)^(n)+(b)/(c)+((3))/(a)+(a^(4))/(c)+(b)/(c),>=,6]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Minimum value of (b+c)/a+(c+a)/b+(a+b)/c( for real positive numbers a,b,c) is (a)1(b)2(c)4(d)6

Minimum value of (b+c)//a+(c+a)//b+(a+b)//c (for real positive numbers a ,b ,c) is (a) 1 (b) 2 (c) 4 (d) 6

Minimum value of (b+c)//a+(c+a)//b+(a+b)//c (for real positive numbers a ,b ,c) is (a) 1 (b) 2 (c) 4 (d) 6

Minimum value of (b+c)//a+(c+a)//b+(a+b)//c (for real positive numbers a ,b ,c) is (a) 1 (b) 2 (c) 4 (d) 6

For three unequal positive real numbers a, b, c show that (b + c) (c + a) (a + b) > 8abc.

If positive numbers a, b, c are in H.P, then minimum value of (a+b)/(2a-b)+(c+b)/(2c-b) is

If a, b, c are positive real numbers, then the least value of (a+b+c)((1)/(a)+(1)/(b)+(1)/( c )) , is

If a, b, c are positive real numbers, then the least value of (a+b+c)((1)/(a)+(1)/(b)+(1)/( c )) , is

If a, b,c are three positive real numbers , then find minimum value of (a^(2)+1)/(b+c)+(b^(2)+1)/(c+a)+(c^(2)+1)/(a+b)