Home
Class 11
MATHS
tan(ilog((a-ib)/(a+ib)))= (i) ab (ii)...

`tan(ilog((a-ib)/(a+ib)))=` (i) `ab` (ii)`(2ab)/(a^2-b^2)` (iii) `(a^2-b^2)/(ab)` (iv) `(2ab)/(a^2+b^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan (i log ((a-ib)/(a+ib))) = (i) ab (ii) (2ab)/(a^(2) -b^(2)) (iii) (a^( 2) -b^(2))/(ab) (iv) (2ab)/(a^(2)+b^(2))

If a and b are real and i=sqrt(-1) then sin[i ln((a+ib)/(a-ib))] is equal to 1) (2ab)/(a^(2)-b^(2)) 2) (-2ab)/(a^(2)-b^(2)) 3) (2ab)/(a^(2)+b^(2)) 4) (-2ab)/(a^(2)+b^(2))

Prove that tan(ilog_e((a-ib)/(a+ib)))=(2ab)/(a^2-b^2) (where a, b in R^+ )

Prove that tan(ilog_e((a-ib)/(a+ib)))=(2ab)/(a^2-b^2) (where a, b in R^+ )

Prove that tan(ilog_e((a-ib)/(a+ib)))=(2ab)/(a^2-b^2) (where a, b in R^+ )

(a^2+b^2+2ab)-(a^2+b^2-2ab)

tan [ i log ((a - ib)/(a + ib )) ] is equal to : a) ab b) (2 ab)/( a ^(2) - b ^(2)) c) (a ^(2) - b ^(2))/( 2 ab) d) (2 ab)/( a ^(2) + b ^(2))

Prove that tan(i log_(e)((a-ib)/(a+ib)))=(2ab)/(a^(2)-b^(2)) (where a,b in R^(+))