Home
Class 11
MATHS
cos^(-1)(-x),|x|<=1," is equal to "...

cos^(-1)(-x),|x|<=1," is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

Is cos^(-1) (-x) = pi - cos^(-1) x , x in [-1,1] ?

cos^(-1)((x-x^1)/(x+x^(-1)))

The domain of the function f(x)=cos^(-1)(x-[x]) is

sin^(-1)x+cos^(-1)x,x in[-1,1]=

For the function f(x)=x cos((1)/(x)),x>=1

Prove that cos^(-1)(3x-4x^3)=3cos^(-1)x,x in[1/2,1]

int (sin^(-1) x -cos^(-1)x)/(sin^(-1) x + cos^(-1)x) dx =

int (sin^(-1)x - cos^(-1)x)/(sin^(-1)x + cos^(-1)x)dx =

If y=(sin^(-1)x-cos^(-1)x)/(sin^(-1)x+cos^(-1)x)," then "(dy)/(dx)=