Home
Class 12
MATHS
Solve the value of x : 2(logxsqrt(5))^2-...

Solve the value of `x : 2(log_xsqrt(5))^2-3log_x sqrt(5)+1=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the value of x:2(log_(x)sqrt(5))^(2)-3log_(x)sqrt(5)+1=0

Solve for x, log_(x) 15 sqrt(5) = 2 - log_(x) 3 sqrt(5) .

Match the column Column I, Column II If x=3,t h e n(log)_4(2(log)_3(1+(log)_2(1+3Log_3x))) is equal to, p. 3 If x=100 , then 3^((log)_3logsqrt(x))-logx+log^2x is equal to, q. 1 If one of the root of the equation 2((log)_xsqrt(5))^2-3(log)_x(a)+1=0 is sqrt(5) , then the other root is, r. 1/2 If (log)_2(4. 3^x-6)-(log)_2(9^x-6)=1, then x is equal to, s. 5

The value of x satisfying log_(3)4 -2 log_(3)sqrt(3x +1) =1 - log_(3)(5x -2)

sqrt(5-log_(2)x)=3-log_(2)x

Solve log_(5)sqrt(7x-4)-1/2=log_5sqrt(x+2)

Solve : log_7log_5 (sqrt(x+5)+sqrt(x))=0

Solve the equation: 2log_(3)x+log_(3)(x^(2)-3)=log_(3)0.5+5^(log_(5)(log_(3)8)

Solve the equation: 2log_(3)x+log_(3)(x^(2)-3)=log_(3)0.5+5^(log_(5)(log_(3)8)