Home
Class 12
MATHS
If AD, BE and CF be the median of a /\AB...

If `AD, BE and CF` be the median of a `/_\ABC`, prove that `vec(AD)+vec(BE)+vec(CF)`=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Let D, E, F are the midpoints of the sides bar(BC), bar(CA) " and " bar(AB) of the triangle ABC. Prove that vec(AD)+vec(BE)+vec(CF)=vec(0) .

If Q is the point of intersection of the medians of a triangle ABC, prove that vec(QA)+vec(QB)+vec(QC)=vec0 .

If AD, BE and CF are the medians of a Delta ABC, then evaluate (AD^(2)+BE^(2)+CF^(2)): (BC^(2) +CA^(2) +AB^(2)).

If AD, BE and CF are the medians of a Delta ABC, then evaluate (AD^(2)+BE^(2)+CF^(2)): (BC^(2) +CA^(2) +AB^(2)).

If AD, BE and CF are the medians of a Delta ABC, then evaluate (AD^(2)+BE^(2)+CF^(2)): (BC^(2) +CA^(2) +AB^(2)).

If G is the centroid of a triangle ABC, prove that vec(GA)+vec(GB)+vec(GC)=vec(0) .

AD BE and CF are the medians of a Delta ABC .Prove that 2(AD+BE+CF)<3(AB+BC+CA)<4(AD+BE+CF)

If AD, BE and CF are medians of triangle ABC then prove that median AD divides line segment EF.

If AD, BE and CF are the medians of a triangle ABC, then AD^(2) + BE^(2) + CF^(2) :BC^(2)+CA^(2)+AB^(2) is equal to