Home
Class 11
MATHS
If f(x)=log((1+x)/(1-x)),t h e n (a)...

If `f(x)=log((1+x)/(1-x)),t h e n` (a)`f(x_1)f(x)=f(x_1+x_2)` (b)`f(x+2)-2f(x+1)+f(x)=0` (c)`f(x)+f(x+1)=f(x^2+x)` (d)`f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=log((1+x)/(1-x)), then (a) f(x_(1))f(x)=f(x_(1)+x_(2))(b)f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^(2)+x)(d)f(x_(1))+f(x_(2))=f((x_(1)+x_(2))/(1+x_(1)x_(2)))

If f(x)=log((1+x)/(1-x)) show that f((2x)/(1+x^(2)))=2(f(x))

If f(x)=log_e.(1+x)/(1-x) , show that f((2x)/(1+x^2))=2f(x) .

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^(2))]=2f(x)

If f(x) =log((1+x)/(1-x)) then prove that: f((x_(1)+x_(2))/(1+x_(1)x_(2)))=f(x_(1)) + f(x_(2))

If f(x) = log_e ((1+x)/(1-x)) , prove that f((2x)/(1+x^2))=2f(x) .

f(x) = log((1+x)/(1-x)) satisfies the equation: f(x_(1)) +f(x_(2))

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot