Home
Class 12
MATHS
tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is e...

`tan^(-1)((1)/(4))+tan^(-1)((2)/(9))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation tan^(-1)x + tan^(-1)((2)/(3)) = tan^(-1)((7)/(4)) is equal to

What is tan^(-1)((1)/(4))+tan^(-1)((3)/(5)) equal to ?

What is tan^(-1)((1)/(2))+tan^(-1)((1)/(3)) equal to?

What is tan^(-1)((1)/(2))+tan^(-1)((1)/(3)) equal to ?

2"tan"^(-1)(1/(3))+"tan"^(-1)(1/(4)) is equal to

Prove that. tan^(-1)((1)/(4)) +tan^(-1)((2)/(9)) =(1)/(2) cos^(-1) ((3)/(5)) .

"tan"^(-1)((1)/(3))+ "tan"^(-1)((2)/(9)) + tan^(-1)((4)/(3^(3))) + ....oo is equal to

The sum of the infinite terms of the series "tan"^(-1)((1)/(3))+ "tan"^(-1)((2)/(9)) + tan^(-1)((4)/(33)) + .... is equal to (pi)/(n) The value of n is:

The sum of the infinite terms of the series "tan"^(-1)((1)/(3))+ "tan"^(-1)((2)/(9)) + tan^(-1)((4)/(33)) + .... is equal to (pi)/(n) The value of n is: