Home
Class 12
MATHS
The solution of (dy)/(dx)+yf'(x)-f(x).f'...

The solution of `(dy)/(dx)+yf'(x)-f(x).f'(x)=0,y!=f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

dy/dx+y f\'(x)-f(x)f\'(x)=0

The solution of the D.E (dy)/(dx)=(y*f'(x)-y^(2))/(f(x)) equal to

General solution of differential equation of f (x) (dy)/(dx) =f ^(2) (x)+yf(x) +f'(x)y is: (c being arbitary constant.)

General solution of differential equation of f (x) (dy)/(dx) =f ^(2) (x)+yf(x) +f'(x)y is: (c being arbitary constant.)

Solve (dy)/(dx) = yf^(')(x) = f(x) f^(')(x) , where f(x) is a given integrable function of x .

Solve (dy)/(dx) = yf^(')(x) = f(x) f^(')(x) , where f(x) is a given integrable function of x .

Solve (dy)/(dx) + yf^(')(x) = f(x) f^(')(x) , where f(x) is a given integrable function of x .

General solution of differential equation of f(x) (dy)/(dx) = f^(2) (x ) + f(x) y + f'(x) y is : ( c being arbitrary constant ) .

Solve: (dy)/(dx)+y*f'(x)=f(x)*f'(x), where f(x) is a given function.

Solve: (dy)/(dx) = (yf^(')(x)-y^(2))/(f(x))