Home
Class 9
MATHS
The value of (sqrt(48)+\ sqrt(32))/(sqrt...

The value of `(sqrt(48)+\ sqrt(32))/(sqrt(27)+\ sqrt(18))` is `4/3` (b) 4 (c) 3 (c) `3/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (sqrt(48)+\ sqrt(32))/(sqrt(27)+\ sqrt(18)) is (a) 4/3 (b) 4 (c) 3 (d) 3/4

(4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18))

The value of (4+3sqrt(3))/(7+4 sqrt(3)) is

(sqrt(3+4i)+sqrt(3-4i))/(sqrt(3+4i)-sqrt(3-4i))=

The value of (sqrt(80)-sqrt(112))/(sqrt(45)-sqrt(63)) is (3)/(4) (b) 1(1)/(3) (c) 1(7)/(9)( d) 1(3)/(4)

Given sqrt(2)=1.414. The value of sqrt(8)+2sqrt(32)-3sqrt(128)+4sqrt(50) is (a) 8.426 (b) 8.484(c)8.526 (d) 8.876

Simplify : sqrt2 - sqrt(18) + sqrt(27) - sqrt(32)

Prove that 3sqrt(48) -4 sqrt(75) + sqrt(192) = 0

sqrt27 + 3 sqrt75 - sqrt(243) + sqrt48 =