Home
Class 11
MATHS
The value of the expression 1-sin^2y/(1+...

The value of the expression `1-sin^2y/(1+cosy)+(1+cosy)/siny-siny/(1-cosy)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

1-(sin^(2)y)/(1+cosy)+(1+cosy)/(siny)-(siny)/(1-cosy)=?

1-(sin^(2)y)/(1+ cos y) + (1+ cosy)/( sin y) - (siny)/(1- cos y) =

Solve: siny dy/dx=cosy(1-xcosy)

cosx(1+cosy)dx-siny(1+sinx)dy=0

If cos x. cosy+sinx.siny=-1 then cosx+cosy is :

If (dI)/(dy)=3^(cosy)*siny , then I is equal to

If (dI)/(dy)=3^(cosy)*siny , then I is equal to

(cosx-cosy)^(2)+(sinx-siny)^(2)=?

prove (sinx-siny)/(cosx+cosy)=tan(x-y)/2