Home
Class 12
MATHS
If |(alpha^(2n),alpha^(2n+2),alpha^(2n+4...

If `|(alpha^(2n),alpha^(2n+2),alpha^(2n+4)),(beta^(2n),beta^(2n+2),beta^(2n+4)),(gamma^(2n),gamma^(2n+2),gamma^(2n+4))|=((1)/(beta^(2))-(1)/(alpha^(2)))((1)/(gamma^(2))-(1)/(beta^(2)))((1)/(alpha^(2))-(1)/(gamma^(2)))`
{where `alpha^(2), beta^(2) and gamma^(2)` are al distinct}, then the value of n is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2tan^(2)alpha tan^(2)beta tan^(2)gamma+tan^(2)alpha tan^(2)beta+tan^(2)beta tan^(2)gamma+tan^(2)gamma tan^(2)alpha=1 prove that sin^(2)alpha+sin^(2)beta+sin^(2)gamma=1

If alpha+beta+gamma=6,alpha^(2)+beta^(2)+gamma^(2)=14 and alpha^(3)+beta^(3)+gamma^(3)=36, then alpha^(4)+beta^(4)+gamma^(4)=

The value of the determinant : |(1-alpha,alpha-alpha^(2),alpha^(2)),(1-beta,beta-beta^(2),beta^(2)),(1-gamma,gamma-gamma^(2),gamma^(2))| is equal to :

|{:(1,alpha,alpha^2),(1,beta,beta^2),(1,gamma,gamma^2):}|=(alpha-beta)(beta-gamma)(gamma-alpha)

The value of the determinant |{:(1-alpha,alpha-alpha^(2),alpha^(@)),(1-beta,beta-beta^(2),beta^(2)),(1-gamma,gamma-gamma^(2),gamma^(2)):}| is equal to

Without expanding the determinant, prove that: (i) |{:(alpha, alpha^(2), beta gamma),(beta, beta^(2), gamma alpha),(gamma, gamma^(2), alpha beta):}| =|{:(1,alpha^(2), alpha^(3)),(1, beta^(2), beta^(3)),(1, gamma^(2), gamma^(3)):}|