Home
Class 11
MATHS
Statement-1 : If 5//3 is the eccentricit...

Statement-`1` : If `5//3` is the eccentricity of a hyperbola, then the eccentricity of its conjugate hyperbola is `5//4`.
Statement-`2` : If `e` and `e'` are the eccentricities of hyperbolas `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1` and `(x^(2))/(a^(2))-(y^(2))/(b^(2))=-1` respectively, then `(1)/(e^(2))+(1)/(e'^(2))=1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1and(y^(2))/(b^(2))-(x^(2))/(a^(2))=1" are "e_(1)ande_(2) respectively then prove that : (1)/(e_(1)^(2))+(1)/(e_(2)^(2))=1

If e and e' are the eccentricities of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2)) =1 and (y^(2))/(b^(2))-(x^(2))/(a^(2))=1 , then the point ((1)/(e),(1)/(e')) lies on the circle:

If e and e' are the eccentricities of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2)) =1 and (y^(2))/(b^(2))-(x^(2))/(a^(2))=1 , then the point ((1)/(e),(1)/(e')) lies on the circle:

If the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1and(y^(2))/(b^(2))-(x^(2))/(a^(2))=1" are "e_(1)ande_(2) respectively then prove that : (1)/(e_(1)^(2))+(1)/(e_(2)^(2))

If the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1and(y^(2))/(b^(2))-(x^(2))/(a^(2))=1" are "e_(1)ande_(2) respectively then prove that : (1)/(e_(1)^(2))+(1)/(e_(2)^(2))

If e is the eccentricity of the hyperbola (x^(2))/(a^(2)) - (y^(2))/(b^(2)) = 1 , then e =

Statement-I If eccentricity of a hyperbola is 2, then eccentricity of its conjugate hyperbola is (2)/(sqrt(3)) . Statement-II if e and e_1 are the eccentricities of two conjugate hyperbolas, then ee_1gt1 .

Statement-I If eccentricity of a hyperbola is 2, then eccentricity of its conjugate hyperbola is (2)/(sqrt(3)) . Statement-II if e and e_1 are the eccentricities of two conjugate hyperbolas, then ee_1gt1 .

Statement-I If eccentricity of a hyperbola is 2, then eccentricity of its conjugate hyperbola is (2)/(sqrt(3)) . Statement-II if e and e_1 are the eccentricities of two conjugate hyperbolas, then ee_1gt1 .

If e_1 and e_2 are eccentricities of two hyperbolas : x^2/a^2-y^2/b^2=1 and x^2/b^2-y^2/a^2=1 , then :