Home
Class 12
MATHS
Let A=|a(ij)|" be a "3xx3 matrix where a...

Let `A=|a_(ij)|" be a "3xx3` matrix where `a_(ij)={{:((i^(j)-j^(i)+2ij)x,iltj),(1,igtj","),(0,i=j):}`, then the minimum value of `|A|` is equal to (where x is a real number)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find a 2xx2 matrix A where a_(ij)=i+j

Construct a 3xx3 matrix A=[a_(ij)] where a_(ij)=2(i-j)

If matrix A=[a_(ij)]_(2xx2) where a_(ij)={{:(2,i ne j),(0, i=j):} then write the matrix A.

Construct a 3xx4 matrix [a_(ij)] , where a_(ij)=2i-j .

A 2xx2 matrix A = [a_(ij)] , where a_(ij) = (i+j)^2 is

Let A=a_(ij) be a matrix of order 3, where a_(ij)={{:(x,,if i=j","x in R),(1,,if |i-j|=1),(0,,"otherwise"):} then which of the following hold good :

If matrix A=[a_(ij)]_(2x2), where a_(ij)={{:(1"," , i ne j),(0",", i=j):} then A^(3) is equal to

Consider a 2xx2 matrix A=[a_(ij)] where a_(ij)=abs(2i-3j) Write A

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….

If a square matrix A=[a_(ij)]_(3 times 3) where a_(ij)=i^(2)-j^(2) , then |A|=