Home
Class 12
MATHS
(dy)/(dx)=3x-2y+5, where 3x-2y+5=u A)6x...

`(dy)/(dx)=3x-2y+5,` where `3x-2y+5=u` A)`6x-4y+10=ce^(2x)` B)`-6x+4y-7=c.e^(-2x)` C)`logu=2x+c` D)`logu=2u+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

(x-y)(1-(dy)/(dx))=e^(y), where x-y=u A) ue^u-e^u=e^(x)+c B) u^(2)=e^(x)+c C) u^(2)=(1)/(2)e^(x)+c D) u^(2)e^(x)=2x+c

x+y(dy)/(dx)=x^(2)+y^(2), where x^(2)+y^(2)=u A) x^(2)+y^(2)=e^(x)+c B) x^(2)+y^(2)=logx+c C) x^(2)+y^(2)=ce^(2x) D) tan^(-1)((x)/(y))=ce^(2x)

(dy)/(dx)=(y)/(x)-x/(y), where y=vx A) y^(2)=xlog((c)/(x)) B) y^(2)=4xlog((c)/(x)) C) y^(2)=2x^(2)log((c)/(x)) D) v^(2)=2clogv

The solution of the differential equation (dy)/(dx) = (3e^(2x) + 3e^(4x) )/( e^(x) + e^(-x) ) is a) y= e^(3x) + C b) y=2e^(2x) + C c) y= e^(x) + C d) y= e^(4x) + C

Find (dy)/(dx) when y=u^(3) and u=sqrt(6x^(2)-2x+1)

log((dy)/(dx))=2x+3 A) y=log(2x+3)+c B) 2y=e^(2x+3)+c C) sqrty=log(2x+3)+c D) 2e^(y)+3=logy+c

If y=(x+3)^(2), then (-2x-6)^(2) is equal to (a)-4y^(2)(b)-2y^(2)(c)-4y(d)2y(e)4y

If 2x+3y=5 and 3x+2y=10 then x-y= (a) 3 (b) 4 (c) 5 (d) 6

(x+2y +1) dx - (2x + 4y +3)dy = 0, x+2y = u