Home
Class 12
MATHS
If vec aa n d vec b are unit vectors s...

If ` vec aa n d vec b` are unit vectors such that `( vec a+ vec b).(2 vec a+3 vec b)xx(3 vec a-2 vec b)=0` , then angle between `veca` and ` vec b` is `0` b. `pi//2` c. `pi` d. indeterminate

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a and vec b are unit vectors such that ( vec a+ vec b).[(2 vec a+3 vec b)xx(3 vec a-2 vec b)]=0 , then angle between veca and vec b is

If vec aa n d vec b are unit vectors such that ( vec a+ vec b).(2 vec a+3 vec b)xx(3 vec a-2 vec b)=0 , then angle between veca and vec b is a. 0 b. pi//2 c. pi d. indeterminate

If vec a and vec b are unit vectors such that ( vec a+ vec b).[(2 vec a+3 vec b)xx(3 vec a-2 vec b)]=0 , then angle between veca and vec b is a. 0 b. pi//2 c. pi d. indeterminate

If vec a and vec b are unit vectors such that (vec a+vec b)*(2vec a+3vec b)xx(3vec a-2vec b)=0 ,then angle between vec a and vec b is 0 b.pi/2c. pi d.indeterminate

If vec a and vec b are unit vectors such that |vec a xx vec b| = vec a . vec b , then |vec a + vec b|^(2) =

If vec aa n d vec b are unequal unit vectors such that ( vec a- vec b)xx[( vec b+ vec a)xx(2 vec a+ vec b)]= vec a+ vec b , then angle theta between vec aa n d vec b is 0 b. pi//2 c. pi//4 d. pi

If vec a and vec b are unequal unit vectors such that ( vec a- vec b)xx[( vec b+ vec a)xx(2 vec a+ vec b)]= vec a+ vec b , then angle theta between vec aa n d vec b is 0 b. pi//2 c. pi//4 d. pi

If vec a and vec b are unequal unit vectors such that ( vec a- vec b)xx[( vec b+ vec a)xx(2 vec a+ vec b)]= vec a+ vec b , then angle theta between vec aa n d vec b is 0 b. pi//2 c. pi//4 d. pi

If vec a and vec b are unequal unit vectors such that (vec a-vec b)xx[(vec b+vec a)xx(2vec a+vec b)]=vec a+vec b then angle theta between vec a and vec b is 0 b.pi/2 c.pi/4 d.pi

If vec aa n d vec b are two vectors, such that vec adot vec b<0a n d| vec adot vec b|=| vec axx vec b|, then the angle between vectors vec aa n d vec b is pi b. 7pi//4 c. pi//4 d. 3pi//4