Home
Class 12
MATHS
Values of x satisfying the inequality |x...

Values of `x` satisfying the inequality `|x^2+8x+7|geq|x^2+4x+4|+|4x+3|` for `x in R` are `(-2,oo)` b. `(3/4,oo)uu{-2}` c. `[-3/4,oo)uu{-2}` d. `[-4/3,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Values of x satisfying the inequality |x^2+8x+7|geq|x^2+4x+4|+|4x+3| for x in R are a. (-2,oo) b. (3/4,oo)uu{-2} c. [-3/4,oo)uu{-2} d. [-4/3,oo)

Values of x satisfying the inequality |x^(2)+8x+7|>=|x^(2)+4x+4|+|4x+3| for x in R are (-2,oo) b.((3)/(4),oo)uu{-2} c.[-(3)/(4),oo)uu{-2} d.[-(4)/(3),oo)

If the solution of the equation |(x^4-9) -(x^2 + 3)| = |x^4 - 9| - |x^2 + 3| is (-oo,p]uu[q,oo) then

Solution set of the inequation, (x^2-5x+6)/(x^2+x+1)<0 is x in (-oo,2) (b) x in (2,3) x in (-oo,2)uu(3,oo) (d) x in (3,oo)

Solution set of the inequation,(x^(2)-5x+6)/(x^(2)+x+1)<0 is x in(-oo,2) (b) x in(2,3)x in(-oo,2)uu(3,oo)( d) x in(3,oo)

Solution set of the inequality (log)_(0. 8)((log)_6(x^2+x)/(x+4))<0 is (-4,-3) (b) (-3,4)uu(8,oo) (-3,oo) (d) (-4,-3)uu(8,oo)

Solution set of the inequality (log)_(0. 8)((log)_6(x^2+x)/(x+4))<0 is (-4,-3) (b) (-3,4)uu(8,oo) (-3,oo) (d) (-4,-3)uu(8,oo)

For x^2-(a+3)|x|+4=0 to have real solutions, the range of a is (-oo,-7]uu[1,oo) b. (-3,oo) c. (-oo,-7) d. [1,oo)

If solution set of Inequality (x^(2)+x-2)(x^(2)+x-16)ge -40 is x epsilon(-oo, -4]uu[a,b]uu[c,oo) then a+b-c is

If solution set of Inequality (x^(2)+x-2)(x^(2)+x-16)ge -40 is x epsilon(-oo, -4]uu[a,b]uu[c,oo) then a+b-c is