Home
Class 10
MATHS
If a x^2+b x+c=0 has equal roots, then c...

If `a x^2+b x+c=0` has equal roots, then `c=` `-b/(2a)` (b) `b/(2a)` (c) `(-b^2)/(4a)` (d) `(b^2)/(4a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a x^2+b x+c=0 has equal roots, then c= (a) b/(2a) (b) b/(2a) (c) (-b^2)/(4a) (d) (b^2)/(4a)

If ax^(2)+bx+c=0 has equal roots,then c=-(b)/(2a)(b)(b)/(2a)(c)(-b^(2))/(4a) (d) (b^(2))/(4a)

If ax^2+bx+c=0 has equal roots,then,c= a) b/(2a) b) -b/(2a) c) b^2/(4a) d) -b^2/(4a)

The value of c for which the equation a x^2+2b x+c=0 has equal roots is (b^2)/a (b) (b^2)/(4a) (c) (a^2)/b (d) (a^2)/(4b)

The value of c for which the equation a x^2+2b x+c=0 has equal roots is (a) (b^2)/a (b) (b^2)/(4a) (c) (a^2)/b (d) (a^2)/(4b)

If a(b-c)x^(2)+b(c-a)x+c(a-b)=0 has equal root,then a,b,c are in

If the equation (a^2+b^2)x^2-2(a c+b d)x+c^2+d^2=0 has equal roots, then (a) a b=c d (b) a d=b c (c) a d=sqrt(b c) (d) a b=sqrt(c d)

Given that a x^2+b x+c=0 has no real roots and a+b+c 0 d. c=0

Given that a x^2+b x+c=0 has no real roots and a+b+c 0 d. c=0