Home
Class 12
MATHS
If alpha is a repeated root of ax^2+bx +...

If `alpha` is a repeated root of `ax^2+bx +c=0` , then `lim_(xrarralpha)(sin(ax^2+bc+c))/(x-alpha)^2` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha is repeated roots of ax^(alpha)+bx+c=0 then lim_(x rarr a)(tan(ax^(2)+bx+c))/((x-alpha)^(2)) is

If 'alpha' is a repeated root of ax^(2)+bx+c=0 then Lt_(x to alpha)(tan(ax^(2)+bx+c))/((x-alpha)^(2))=

Let alpha be the repeated root of px^(2)+qx+r=0 , then lim_(xrarralpha)(sin(px^(2)+qx+r))/((x-alpha)^(2)) equals

Let alpha and beta be the roots of ax^2+bx+c=0 Then lim_( x to alpha) (1- cos (ax^2+bx+c))/(x-alpha)^2 is equal to

Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0 , then lim_(x rarr alpha) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2)) is equal to :

If alpha, beta are the roots of x^(2)-ax+b=0 , then lim_(xrarralpha)(e^(x^(2)-ax+b))/(x-alpha)=

Ifa alpha and beta be the roots of ax^(2)+bx+c=0, then lim_(x rarr alpha)(1+ax^(2)+bx+c)^((1)/(x-a)) is equal to

If alpha,beta are the roots of the equation ax^2+bx+c=0 , then lim_(xrarralpha)(ax^2+bx+c+1)^(1//x-alpha) is equal to

If alpha,beta are the roots of the equation ax^2+bx+c=0 , then lim_(xrarralpha)(ax^2+bx+c+1)^(1//x-alpha) is equal to