Home
Class 11
MATHS
" 41."int(log2)^(t)(dx)/(sqrt(e^(x)-1))=...

" 41."int_(log2)^(t)(dx)/(sqrt(e^(x)-1))=(pi)/(6)," then "t=

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(ln2)^(x)(dt)/(sqrt(e^(t)-1))=(pi)/(6), then x=

If int_(log2)^(x)(dx)/(sqrt(e^(x)-1))=(pi)/(6), then x is equalto 4 (b) ln8(c)ln4(d) none of these

If int_(log2)^(x) (1)/(sqrt(e^(x)-1))dx=(pi)/(6) then x is equal to

If : int_(ln 2)^(x)(1)/(sqrt(e^(t)-1))dt=(pi)/(6) , then : x =

If int(log 2)^(x) (dy)/(sqrt(e^(y) -1)) = (pi)/(6) , prove that x = log 4

If int_(log2)^(a)(e^(x))/(sqrt(e^(x)-1))dx=2 then a=

If int_(log2)^(a)(e^(x))/(sqrt(e^(x)-1))dx=2 then a=

If int_(1)^(x) (dt)/(|t|sqrt(t^(2)-t)) = (pi)/(6) , then x can be equal to :

If int_(ln2)^x(dt)/(sqrt(e^t-1))=pi/6 , then x=