Home
Class 12
MATHS
Let g(x)=2f(x/2)+f(2-x)a n df^('')(x)&lt...

Let `g(x)=2f(x/2)+f(2-x)a n df^('')(x)<0AAx in (0,2)dot` Then `g(x)` increases in (a)`(1/2,2)` (b) `(4/3,2)` (c)`(0,2)` (d) `(0,4/3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x)=2f(x/2)+f(2-x) and f''(x)<0 , AA x in (0,2) .Then g(x) increasing in

g(x)=2f((x)/(2))+f(2-x) and f'(x)<0AA x in(0,2) Then g(x) increases in (a) (a) ( (1)/(2),2) (b) ((4)/(3),2) (c) (0,2) (d) (0,(4)/(3))

Let g(x)=2f(x/2)+f(x) and f''(x)lt0 " in "0lexle1 , then g(x)

Let g(x)=f(logx)+f(2-logx)a n df''(x)<0AAx in (0,3)dot Then find the interval in which g(x) increases.

Let g(x)=f(logx)+f(2-logx)a n df''(x)<0AAx in (0,3)dot Then find the interval in which g(x) increases.

Let g(x)=f(logx)+f(2-logx)a n df^(x)<0AAx in (0,3)dot Then find the interval in which g(x) increases.

Let g(x)=f(logx)+f(2-logx) and f^(prime prime)(x)<0AAx in (0,3)dot Then find the interval in which g(x) increases.

Let g(x)=2f(x/2)+f(2-x) and f''(x) < 0 AA x in (0,2). If g(x) increases in (a, b) and decreases in (c, d), then the value of a + b+c+d-2/3 is

Let g(x)=2f(x/2)+f(2-x) and f''(x) < 0 AA x in (0,2). If g(x) increases in (a, b) and decreases in (c, d), then the value of a + b+c+d-2/3 is

Let g(x) = 2 f(x/2)+ f(2-x) and f''(x) lt 0 forall x in (0,2) . Then calculate the interval in which g(x) is increasing.