Home
Class 10
MATHS
Prove the following: sinthetasin(90^0-th...

Prove the following: `sinthetasin(90^0-theta)-costhetacos(90^0-theta)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: sin theta sin(90^(@)-theta)-cos theta cos(90^(@)-theta)=0

Prove the following: sin theta sin(90^(@)-theta)-cos theta cos(90^(@)-theta)=0

Prove that : (sinthetacos(90^0-theta)costheta)/(sin(90^0-theta))+(costhetasin(90^0-theta)sintheta)/(cos(90^0-theta))=1

Prove that :(sin theta cos(90^(0)-theta)cos theta)/(sin(90^(0)-theta))+(cos theta sin(90^(0)-theta)sin theta)/(cos(90^(@)-theta))=1csc^(2)(90^(@)-theta)-tan^(2)theta=cos^(2)(90^(@)-theta)+cos^(2)theta

Find x from the following equation: cos e c(90^0+theta)+x costhetacot(90^0+theta)=sin(90^0+theta)

Prove that:a. costhetasin(90^@-theta)+sinthetacos(90^@-theta)=1

Prove the following identities: (i) costhetasin(90^o-theta)+sinthetacos(90^o-theta)=1 (ii) (sin(90^o-theta))sintheta/(tantheta)-1=-sin^2theta (iii) (sin(90^o-theta)cos(90^o-theta))/(tantheta)=1-sin^2theta

Prove the following: (cos(90^0-theta)sec(90^0-theta)t a ntheta)/(cosec(90^0-theta)sin(90^0-theta)cot(90^0-theta))+(tan(90^0-theta))/(cottheta)=2

Find x from the following equation: cos ec(90^(0)+theta)+x cos theta cot(90^(0)+theta)=sin(90^(@)+D)=0

Prove that: (t a n(90^0-theta)s e c(180^0-theta)sin(-theta))/(sin(180^0+theta)cot(360^0-theta)cosec(90^0-theta))=1