Home
Class 11
MATHS
(C(0))/(1)+(C(2))/(3)+(C(4))/(5)+..........

(C_(0))/(1)+(C_(2))/(3)+(C_(4))/(5)+............=(2^(n))/(n+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

(C_(0))/(2)+(C_(1))/(3)+(C_(2))/(4)+(C_(3))/(5)+.......+(C_(n))/(n+2)=(1+n*2^(n+1))/((n+1)(n+2))

(C_(0))/(1.2)+(C_(1))/(2.3)+(C_(2))/(3.4)+......*(C_(n))/((n+1)(n+2))=

Prove the following: C_(0)+(C_(2))/(3) +(C_(4))/(5) + … = (2^(n))/(n+1)

Statement-1: (C_(0))/(2.3)- (C_(1))/(3.4) +(C_(2))/(4.5)-.............+............+(-1)^(n) (C_(n))/((n+2)(n+3))= (1)/((n+1)(n+2)) Statement-2: (C_(0))/(k)- (C_(1))/(k+1) +(C_(2))/(k+3)+............+(-1)^(n) (C_(n))/(k+n)=int_(0)^(1)x^(k-1) (1 - x)^(n) dx

Statement-1: (C_(0))/(2.3)- (C_(1))/(3.4) +(C_(2))/(4.5)-.............+............+(-1)^(n) (C_(n))/((n+2)(n+3))= (1)/((n+1)(n+2)) Statement-2: (C_(0))/(k)- (C_(1))/(k+1) +(C_(2))/(k+3)+............+(-1)^(n) (C_(n))/(k+n)=int_(0)^(1)x^(k-1) (1 - x)^(n) dx

If C_(0),C_(1),C_(2),...,C_(n) denote the binomial coefficientsin the expansion of (1+x)^(n), then (C_(0))/(2)-(C_(1))/(3)+(C_(2))/(4)-(C_(3))/(5)+......+(-1)^(n)(C_(n))/(n+2)=

(C_(0))/(1)-(C_(1))/(2)+(C_(2))/(3)+.. . .+((-1)^(n))/(n+1). C_(n) =