Home
Class 12
CHEMISTRY
The ionization energy of hydrogen atom i...

The ionization energy of hydrogen atom in the ground state is `1312 kJ "mol"^(-1)` . Calculate the wavelength of radiation emitted when the electron in hydrogen atom makes a transition from n = 2 state to n = 1 state (Planck’s constant, `h = 6.626 xx 10^(-34) Js`, velocity of light, `c = 3 xx 10^8 m s^(-1)`, Avogadro’s constant, `N_A = 6.0237 xx 10^23 "mol"^(-1)` ).

Text Solution

Verified by Experts

I.E. of hydrogen atom in the ground state `= 1312 kJ "mol"^(-1)`
Energy of hydrogen atom in the first orbit `(E_1) = -I.E = -1312 kJ "mol"^(-1)`
Energy of hydrogen atom in the nth orbit `(E_n) = (-1312 )/(n^2) kJ "mol"^(-1)`
Energy of hydrogen atom in the second orbit `(E_2) = - (1312)/(2^2) = -328 kJ "mol"^(-1)`
`Delta E = E_2 - E_1 = [-328 - (-1312)] kJ = 984 kJ "mol"^(-1)`
Energy released per atom ` = (Delta E)/(N) = (984 xx 10^3 J//"atom")/(6.023 xx 10^23) `
` (Delta E)/(N) = hv = h c/lamda , therefore lamda = (Nh_1 c)/(Delta E)`
` therefore lamda = (6.626 xx 10^(-34) Js xx 3 xx 10^8 ms^(-1) xx 6.0237 xx 10^23)/(984 xx 10^3 J) = 1.2 xx 10^(-7) m`
Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate the uncertainty in the velocity of a wagon of mass 3000kg whose position is known to an accuracy of ± 10 pm (Planck’s constant = 6.626 xx 10^(−34) Kg m^2 s^(-1) .

The frequency of radiation emitted when the electron falls from n=4 to n=1 in a hydrogen atom will be (given ionisation energy of H=2.18xx10^(18)J"atom"^(-1) and h=6.625xx10^(-25)Js )

The number of atoms in 0.1 mol of a triatomic gas is : (N_A = 6.02 xx 10^23 "mol"^(-1) )