Home
Class 12
MATHS
If siny=xcos(a+y) , then (dy)/(dx) is eq...

If `siny=xcos(a+y)` , then `(dy)/(dx)` is equal to (a)`(cos^2(a+y))/(cosa)` (b) `(cosa)/(cos^2(a+y))` (c) `(s in^2y)/(cosa)` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If siny=xcos(a+y) , then (dy)/(dx) is equal to (a) (cos^2(a+y))/(cosa) (b) (cosa)/(cos^2(a+y)) (c) (sin^2y)/(cosa) (d) none of these

If sin y=x cos(a+y), then (dy)/(dx) is equal to (cos^(2)(a+y))/(cos a)( b) (cos a)/(cos^(2)(a+y)) (c) (s in^(2)y)/(cos a) (d)

If siny=xcos(a+y) , then find (dy)/(dx)

If y=sin^(2)x.cos^(3)x, then (dy)/(dx)

If cosy=xcos(a+y)" with "cosa!= +-1 , then dy/dx is equal to

If cosy = xcos (a+y) with cos a ne pm1 , then (dy)/(dx) is equal to

If cosy=xcos(a+y), with cosa!=+-1, prove that (dy)/(dx)=(cos^2(a+y))/(sina)dot

If cosy=xcos(a+y), with cosa!=+-1, prove that (dy)/(dx)=(cos^2(a+y))/(sina)dot

If cosy=xcos(a+y), with cosa!=+-1, prove that (dy)/(dx)=(cos^2(a+y))/(sina)dot

If cosy=xcos(a+y) , with cosa!=+-1 , prove that (dy)/(dx)=(cos^2(a+y))/(sina) .