Home
Class 11
MATHS
|x-1|^((log x)^(2)-log x^(2))=|x-1|^(3)...

|x-1|^((log x)^(2)-log x^(2))=|x-1|^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve |x-1|^((log_(10)x)^(2)-log_(10)x^(2))=|x-1|^(3)

Solve |x-1|^((log_(10) x)^2-log_(10) x^2=|x-1|^3

Solve: |x-1|^((log_(10)x)^(2)-log_(10)x^(2))=|x-1|^(3)

Solve |x-1|^((log_(10) x)^2-log_(10) x^2=|x-1|^3

Solve: |x-1|^((log)_(10)x)^2-(log)_(10)x^2=|x-1|^3

int(log(x+1)-log x)/(x(x+1))dx= (A) log(x-1)log x+(1)/(2)(log x-1)^(2)-(1)/(2)(log x)^(2)+c (B) (1)/(2)(log(x+1))^(2)+(1)/(2)(log x)^(2)-log(x+1)log x+c (C) -(1)/(2)(log(x+1)^(2))-(1)/(2)(log x)^(2)+log x*log(x+1)+c (D) [log(1+(1)/(x))]^(2)+c

int((log x)^(2)-log x+1)/(((log x)^(2)+1)^((3)/(2)))dx

The value of x satisfies the equation (1-2(log x^(2)))/(log x-2(log x)^(2))=1

Solve for x : 3^(log x)-2^(log x) =2^(log x+1)-3^(log x-1)

3^(log x)-2^(log x)=2^(log x+1)-3^(log x-1), where base is 10,