Home
Class 11
MATHS
18." If "cos x+cos^(2)x=1," prove that "...

18." If "cos x+cos^(2)x=1," prove that "sin^(2)x+sin^(4)x=

Promotional Banner

Similar Questions

Explore conceptually related problems

cos x+cos^(2)x=1 then sin^(8)x+2sin^(6)x+sin^(4)x=

If sin x+cos x=a, then prove that: sin^(6)x+cos^(6)x=1-(3)/(4)(a^(2)-1)^(2) where a^(2)<=2

If sin x+cos x=a then prove that: sin^(6)x+cos^(6)x=1-(3)/(4)(a^(2)-1)^(2), where a^(2)<=2

If sin x + sin^(2) x + sin^(3) x = 1 , then prove that cos^(6)x - 4 cos^(4) x + 8 cos^(2) x - 4 = 0 .

If cos x+sin x=sqrt(2)cos x, prove that that cos x-sin x=sqrt(2)sin x

Prove that sin^(6)x + cos^(6)x = 1 - 3 sin^(2) x cos^(2)x .

If sin x + sin^(2) x =1 " then " cos^(8) x + 2 cos^(6) x + cos^(4) x =

The value of (cos^(4)x+cos^(2)x sin^(2) x + sin^(2)x)/(cos^(2)x+ sin^(2) x cos^(2) x + sin^(4)x) is ____________

If (cos ^ (4) x) / (cos ^ (2) y) + (sin ^ (4) x) / (sin ^ (2) y) = 1 then prove that (cos ^ (4) y) / (cos ^ (2) x) + (sin ^ (4) y) / (sin ^ (2) x) = 1