Home
Class 9
MATHS
Solve : (i) x^(log(10)x)= 100x....

Solve :
(i) `x^(log_(10)x)= 100x`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve (x+1)^(log_(10)(x+1))=100(x+1)

Solve (x+1)^(log_(10) (x+1))=100(x+1)

Solve (x+1)^(log_(10) (x+1))=100(x+1)

Solve : (iv) log_(10)x - log_(10)sqrt(x) = 2/(log_(10)x)

Solve for x : (i) log_(10) (x - 10) = 1 (ii) log (x^(2) - 21) = 2 (iii) log(x - 2) + log(x + 2) = log 5 (iv) log(x + 5) + log(x - 5) = 4 log 2 + 2 log 3

Solve for x : log_(10)x = -2 .

Solve for x.x^(log_(10)x+2)=10^(log_(10)x+2)

Solve for x : x+(log)_(10)(1+2^x)=x(dot(log)_(10)5+log_(10)6)

Solve the following equations. (i) x^(1+log_10x)=10x

Solve the following equations. (i) x^(1+log_10x)=10x