Home
Class 12
MATHS
int(sec^(2)x)/((sec x+tan x)^((9)/(2)))d...

int(sec^(2)x)/((sec x+tan x)^((9)/(2)))dx" is equals to "

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int(sec^(2)x)/((sec x+tan x)^((9)/(2)))dx equals (for some arbitrary constant K)-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)+(1)/(7)(sec x+tan x)^(2)}+K

The integral (sec^(2)x)/((sec x+tan x)^((9)/(2))) is equal to

int (sec^(2)x)/((sec x+ tan x)^(5))dx=

The integral int (sec^(2) x)/((sec x+tan x)^(9//2))dx equals : (for some arbitrary constant k)

int(sec x)/((sec x+tan x)^(2))dx

int(sec x)/(sec x+tan x)dx=

int(sec^(2)x)/(tan x)dx

int(sec^(2)x)/(tan x)dx

int(sec^(2)x)/(9-tan^(2)x)dx

int(sec^(2)x)/(tan^(2)x+4)dx